登录
注册
联系我们
首页
技术成果
行业资讯
政策要闻
平台动态
应咨在线
应咨映像
应咨资料馆
科创服务
科创企业上市服务
知识产权服务
司法鉴定服务
专家智库
数据搜索
服务咨询
一种基于超限学习机的高光谱遥感图像地物分类方法
联系我们
专利号:
CN106897737B
成果方:
北京理工大学
成果类型:
发明授权
发明人:
邓宸伟; 周士超; 王文正; 代嘉慧; 唐林波
授权日:
2019-10-11
价值预估:
请联系我们获取最新价值
本发明公开了一种基于高光谱遥感图像的地物分类方法,将原始的超限学习机网络扩展为层级化多通道融合网络,在网络训练方面,不同于原始ELM网络的最小二乘算法求解输出权重策略以及深度学习网络的全局迭代调优策略,本发明采用贪婪式逐层训练的方式,对层级网络逐层训练,极大地缩短了网络的训练时间,在逐层训练的过程中,每层网络的训练求解模型均添加l1正则优化项,使得参数求解结果更稀疏,减少过拟合风险,在网络功能方面,单隐层ELM网络侧重解决简单数据的拟合、分类问题,而本发明所提网络模型的不同层级实现了目标数据特征学习或特征融合,同时也继承了前者训练速度快、泛化能力强的优点,非常有利于模型的在轨实现并适应应急响应任务的要求。
网站导航
首页
权益登记
技术信息登记
能力信息登记
成果信息登记
技术成果
找资金
股权融资
债权融资
行业资讯
政策要闻
媒体报道
平台动态
贷款问题咨询
应咨在线
应咨映像
应咨资料馆
科创服务
科创企业上市服务
知识产权服务
司法鉴定服务
专家智库
关于上技所
公司荣誉
数据大屏
数据搜索
服务咨询